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Abstract. Using a Hagedorn resonance gas picture and quark-hadron duality we estimate the dilepton
emission rate in the vicinity of the QCD deconfinement phase transition. The result is then used to calculate
a dilepton spectrum in ultrarelativistic heavy ion collisions. We show that multibody contributions taken
into account in the Hagedorn resonance gas approach provide an enhancement of the production rate
massive dileptons as compared to the previously considered sources.

1 Thermal rate from a dense hadron matter

The dilepton production in high energy heavy ion colli-
sions has drawn considerable attention as a possible sig-
nal for the appearance of a quark-gluon plasma [1], see
also the reviews [2]. The main problem, however, is to
distinguish the signals coming from the normal hadronic
phase and from the quark-gluon plasma. To be able to do
so one needs reliable models for the dilepton production.
At extremely high temperatures the situation is relatively
clear. Due to the asymptotic freedom of QCD the domi-
nant production mechanisms are perturbative. At very low
temperatures we also have a reliable description of dilep-
ton production in a rarefied hadron gas, predominantly
by pion annihilation. Much less can be said about the
intermediate temperature range around the phase tran-
sition temperature Tc ∼ 160 MeV, where the hadronic
gas is very hot and dense and the usual methods do not
work, but the quark-gluon plasma is cold and rarefied and
the perturbative QCD results are less reliable. We shall
address the problem of estimating the dilepton emission
from a hadron gas at these intermediate temperatures.
This is of special interest because a hadron gas close to
the transition temperature Tc could be a dominant feature
of the final state produced at the present CERN heavy ion
experiments with lead beams.

The new experimental data on dilepton production in
heavy ion collisions demonstrate a pronounced excess of
produced dileptons over those produced by known hadron
sources both in low-mass range [3] and at larger masses [4].
This is a clear motivation to look for additional sources
of dileptons not taken into account in the conventional
treatment. The excess of small-mass dileptons has been
extensively discussed (see, e.g., [5,6]). More related to our
discussion is, however, the excess in the intermediate mass
range 1.5 GeV ≤ M ≤ 2.5 GeV by roughly a factor of 2
with respect to expected contributions from the known
sources. This is because the theoretical description we

are developing is valid only for sufficiently large invari-
ant masses of lepton pairs. The results will be shown for
the mass interval 1.5 GeV ≤ M ≤ 4 GeV. We shall ar-
gue, that by improving the treatment of dilepton emission
from the dense and hot hadron gas at the vicinity of Tc one
can get such an increase with respect to the conventional
description.

In [7] we have proposed to use a Hagedorn resonance
gas picture and quark-hadron duality to calculate the
dilepton emission rate in the hadron phase at tempera-
tures close to the critical one. Below we shall refine these
arguments and present additional support to the main
conclusion of [7]. In the next section we shall construct
an interpolation for the dilepton emission rate satisfying
the conditions following from the quark - hadron duality
and use it in a hydrodynamical model for heavy ion colli-
sions. In the last section we formulate our conclusions.

The problem of calculating the dilepton emission rate
in a hadron gas including also the mass range 1.5 GeV
≤ M ≤ 4 GeV has been considered in [8] and [9]. We com-
pare the results of [8,10] for the rate from binary hadron
collisions with our results from the dense resonance gas
at Tc. We shall comment on the relation of our results
to those of [9]. Since our treatment effectively averages
over mass intervals of the order of vector meson widths
and mass differences, we cannot address the problem of
medium effects on individual resonance parameters, rele-
vant for the low-mass region of CERES results [3].

Let us first remind of the picture of dilepton produc-
tion at a critical temperature proposed in [7]. The main
idea can be formulated as follows. In the vicinity of the
critical point the hadronic matter is extremely dense and
the interactions between the hadrons are very strong. The
idea of a Hagedorn resonance gas approach [11] is to en-
code the infinitely complicated strong interaction physics
of a hot and dense hadron matter in a single function, an
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exponentially rising mass spectrum

ρ(m) = c
1

ma
em/T0 . (1)

The main idea proposed in [7] was that the exponential
spectrum in (1) takes care of strong interactions only. The
free massive degrees of freedom saturating the partition
function of the Hagedorn gas can still experience electro-
magnetic and weak decays. Of a particular interest to us
is the spectrum of vector mesons, which are the only im-
portant source of dilepton production in the Hagedorn
resonance gas in the considered mass range.

In the vector dominance model, to be used below, the
dilepton width of a vector meson is given by

Γ l+l−
M =

1
g2(M)

4α2M

3
. (2)

The spectrum of dileptons produced by the decays of vec-
tor resonances belonging to the Hagedorn gas can be writ-
ten in the relativistic kinetic theory in the form

dRl+l−
V

dM2 =
∫

dmρV (m)
∫

d3p

2E(2π)3
exp(−E/T ) (3)

×
∫

d3p1

2E1(2π)3
d3p2

2E2(2π)3
|M(p → p1 + p2)|2

×(2π)4δ(4)(p − p1 − p2)δ((p1 + p2)2 − M2) ,

where p is the four-momentum of a decaying vector meson
with a mass m, E =

√
p2 + m2 is its energy, p1,2 are the

four-momenta of the emitted lepton and antilepton, and
ρV (M) is the subspectrum of vector mesons in (1), not
necesserily exponential. In (4) we have assumed a Boltz-
mann distribution for the energy of the decaying meson
which holds with a very good accuracy provided the in-
variant mass is high enough.

In the above formula the squared matrix element for
the V → l+l− decay, including spin summation and aver-
aging, has the form

|M(p → p1 + p2)|2 =
(

4πα

g(m)

)2 4
3

(p1 + p2)2 ,

which also gives the result (2) for the decay width. For the
dilepton emission rate one gets from (4)

dRl+l−
V

dM2 = ρV (M)
α2

6πg2(M)
M2 TK1(M/T ) . (4)

The most important point is now to fix the mass de-
pendence of the coupling constant 1/g(M). Here we can
use the known cross section of e+e− annihilation into
hadrons which takes place in the same vector channel we
are considering. The cross section of e+e− annihilation
into heavy vector mesons characterized by the mass spec-
trum ρV (M) reads:

σ(e+e− → V ) =
(2π)3α2

g2(Q)
1
Q

ρV (Q) , (5)

where Q, the CMS energy of e+e− collision, equals the
mass of produced vector meson. We proceed by assuming
in the spirit of the Hagedorn bootstrap picture that the
total cross section of e+e− annihilation into hadrons is
saturated by the production of vector meson states. This
allows us to relate the emission rate from the Hagedorn
gas to the total e+e− → hadrons cross section. We first
have

σ(e+e− → hadrons) = Rexp(Q)
4π

3
α2

Q2

= σ(e+e− → V )(Q) . (6)

From the above two equations we get the the mass depen-
dence of the coupling constant

1
g2(M)

=
Rexp(M)

2π2

1
M

1
ρV (M)

(7)

and finally, by inserting this into (4), we can calculate the
dilepton production rate in terms of known quantities:

dRl+l−
V

dM2 = Rexp(M)
α2

6π3 MTK1(M/T ) . (8)

Let us rewrite the function Rexp(M) as

Rexp(M) ≡ Rpart + δR(M) , (9)

where we have decomposed Rexp(M) into a sum of its
parton model prediction Rpart = Nc

∑
f e2

f , where ef is an
electric charge of the quark in units of the electron charge,
and the deviation from the parton model result, δR(M).
Experimentally one has Rexp ∼ Rpart with a good accu-
racy for the mass-averaged cross section even though the
local mass spectrum shows a visible resonance structure
parametrized by δR. From (8,9) we get

dRl+l−
V

dM2 = Rpart α2

6π3 MTK1(M/T )

+δR(M)
α2

6π3 MTK1(M/T ),

or finally
dRl+l−

V

dM2 =
dRl+l−

q

dM2 + O(δR) . (10)

This result shows that the parton model emission rate of
dileptons with mass M equals that from the resonance gas
at T ∼ Tc with the same accuracy as parton model de-
scribes the total cross section for e+e− → hadrons at the
CMS energy M . We should like to stress, that this result
does not depend on a particular assumption on the form
of the heavy vector meson spectrum. A natural interpreta-
tion of the result is that hadrons as local annihilating de-
grees of freedom do not provide a simple description of the
dilepton production in the immediate vicinity of a critical
point, where they start to dissolve to their partonic con-
stituents. As the correlations among the constituents get
weaker the electromagnetic current, when probed through
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the production of heavy lepton pairs, is effectively that of
quarks.

This picture leads us in turn to a conjecture on the
general behaviour of the dilepton rate as a function of
temperature. Let us recall, that a formal nonperturbative
expression for the dilepton rate in the hadron gas reads
[12], [13]

dN

d4q
= − α2

6π3q2

∫
d4xe−iqx << Jµ(x)Jµ(0) >>T . (11)

Basing on (10) and the above-described physical picture
it is tempting to suggest that at high enough dilepton
masses the current-current correlator in (11) and thus the
dilepton emission rate is to a good accuracy a continuous
function of temperature across the phase transition point.
How low in the dilepton invariant mass does this hold is
determined by the accuracy related to the approximation
made in (6). It would be interesting to check this conjec-
ture in lattice stimulations.

As our aim is to calculate dilepton production in heavy
ion collisions, we shall need a continuous rate interpola-
tion from the hadron rate to the QCD one as a function
of temperature. A simple way of constructing an interpo-
lation which will agree with (10) is to start from the rate
due to binary hadron collisions calculated in [8] and match
it to the QCD one at the critical temperature Tc.

Before turning to the actual hydrodynamic calculation,
let us also mention a calculation in [9] based on using the
soft pion theorems in calculating the hadronic contribu-
tion to the polarization tensor. The main result of this
paper for thermal dilepton rate from the hadron gas can
be rewritten in the form

dRl+l−
(s)h

dM2 =
dRl+l−

q

dM2

[
1 − (ε − ε2

2
)(

ρV (M) − ρA(M)
ρem(M)

)
]

×(1 + δR/Rpart) , (12)

where ε = T 2/6F 2
π , Fπ = 93 MeV and ρem, ρV and ρA

are the suitably defined electromagnetic, vector and axial
spectral densities which can be extracted from measured
quantities (for details see [9]). In the following we shall
be interested in the production of dilepton pairs having
invariant masses M > 1.5 GeV. In this mass range one
can neglect ρA with respect to ρV and take ρV = ρem [9].
This gives, when neglecting δR,

dRl+l−
(s)h

dM2 =
dRl+l−

q

dM2 [1 − (ε − ε2

2
)] . (13)

It is interesting that the temperature dependence through
ε is in fact quite smooth, so the rate is predicted to be close
to the thermal quark-antiquark one even at temperatures
below Tc. This obviously agrees with our main result (10).
Unfortunately the range of masses where experimental in-
formation is available for the technique of [9] is limited
to M ≤ 2.2 GeV, so to analyze a broader mass interval
one in forced to use a more phenomenological approach as
described below.
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Fig. 1. Ratio of static hadronic dilepton production rate in a
binary collision approximation to the quark-antiquark one at
T=160 MeV

Let us now turn to the calculation of the dilepton emis-
sion rate from a hadron gas due to binary collisions of
mesons [8]. In view of the previous discussion it is of spe-
cial interest and importance to look how close is the rate
of this approach to our result. This will provide valuable
information on the relative importance of the higher res-
onances and the multibody effects in dilepton emission
processes. In the Boltzmann approximation for the ther-
mal distribution, which works fairly well when the invari-
ant masses of lepton pairs satisfy M > 1.5 GeV, the rate
reads

dRl+l−
(b)h

dM2 = α2 σh(M)
(2π)4

MTK1(M/T ) , (14)

where σh(M) is calculated from the specific Lagrangian
for meson interactions [8]. In the following we shall use the
rate (14) including the following reactions 1 (for brevity
we list only the incoming particles) [10]: π+π−, K+K−,
K0K̄0, ρ+ρ−, K∗+K∗−, K∗0K̄∗0, πρ, π0ω, π0φ, ηρ0, ηω,
ηφ, η′ρ0, η′ω, η′φ, K+K∗− + K−K∗+, K0K̄∗0 + K̄0K∗0,
π0ω(1420), π0ω(1660).

In Fig. 1 we show the ratio of this binary hadron rate
to our result (8) and (10) at T = 160 MeV in the mass
interval of interest. We see that the rate from binary inter-
actions is less than our rate which takes into account also
higher resonances and multibody effects and, in the ap-
proximation we use, equals the rate from quark-antiquark
annihilations at this temperature. In the Hagedorn reso-
nance gas approach the critical temperature is expected to
be of order (Tc ∼ 160 MeV), so taking into account con-
tributions from binary collisions only is not sufficient at
least in the vicinity of the critical point. In the end of the
next section we shall discuss the numerical importance of
this in calculating dilepton production in heavy ion colli-
sion in a hydrodynamic model, but already now one could
notice, that the dependence on temperature in the above

1 We are very grateful to P. Lichard for providing us the
numerical data for this rate
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ratio cancels (cf. (8) and (14), so the difference is directly
translated into the changes in the total dilepton rate.

2 Dilepton emission in a hydrodynamic model

In this section we shall study the implications of the above
considerations on dilepton production in heavy ion colli-
sions described with the simplest one-dimensional scaling
hydrodynamic model [15]. The resulting dilepton rate is
obtained by integrating over the space-time history of the
expansion.

The main result of the previous section is the approx-
imate continuity of the thermal emission rate of massive
lepton pairs across the phase transition point. Thus the
expression for the thermal dilepton emission in hadron
phase used in hydrodynamical calculations should be con-
structed to ensure this continuity matching. In the narrow
mass range, where the experimental data on spectral den-
sities is available one can apply (12) with the approximate
continuity automatically satisfied. To describe the dilep-
ton mass spectrum in a wider mass range, as needed to
compare with experiment, one needs effective approaches
like that in [8]. Since the binary reactions should be the
main source of dileptons at low densities and tempera-
tures and since we expect our results to apply best in the
vicinity of the critical temperature, we will construct an
interpolation procedure which at Tc equals the quark mat-
ter rate and goes over to the binary hadron rate of [8] a
low temperatures.

Below we shall consider the cases of first order and
second order deconfinement phase transition. The critical
temperature in both cases is chosen to be 160 MeV and
the freezeout temperature 130 MeV. The basic difference
between these two cases is the presence or absence of a
mixed phase. From the arguments of the previous section
it is clear, that for the dilepton emission the rate should
stay equal to the quark-antiquark one for the whole dura-
tion of mixed phase.

Let us rewrite a well-known basic formula for the spec-
trum of dileptons emitted during the one-dimensional scal-
ing expansion (see e.g. [14], [16]) in the form

dN l+l−

dMdy
= πR2

A

∫ τ2

τ1

dττ r
q(m,h)
q(h)

×(T (τ))
dRl+l−

q(h)

dM2 (M, T (τ)) , (15)

where RA is the radius of the smaller of the two colliding
nuclei, r

q(m,h)
q,h specifies the weight for the quark matter

and hadron gas thermal rates (lower index) in each of the
phases, quark matter, mixed or hadron gas (upper index).
A head-on collision is assumed. To specify completely the
evolution of the system one has to know the equations of
state for both phases and the nature of the phase transi-
tion. The entropy of the quark-gluon phase will be taken
equal to that of the ideal gas of gluons and three lightest
quarks

Sq(T ) =
74π2

45
T 3 +

1
π2 (12m2

sTK2(ms/T )

+3m3
sK1(ms/T )) . (16)

A hadron phase will be described by a free resonance gas
including all particles with the masses up to 2 GeV. The
dependence of temperature on proper time T (τ) follows
from the Bjorken equation [15]

S(T (τ)) =
1
τ

3.6
πR2

A

dN

dy
. (17)

Let us start with the case when the deconfinement
transition from the hadron gas to the quark-gluon plasma
is of second order. Here the entropy is continuous across
the phase transition point Tc. We shall assume that at all
temperatures the entropy is given by a slightly generalized
form of an interpolation used in [17])

S(T ) = (1 − η(T ))Sh(T ) + η(T )Sq(T ) , (18)

where
η(T ) =

1
2
(1 + tanh[(T − Tc)/∆T ]) (19)

and ∆T specifies the width of the transient zone where
the entropy density of one phase goes over to that of the
other phase. We shall take ∆T = 16 MeV, 10% of Tc. Let
us note, that the interpolation (18) does not imply that
the phases are mixed at any temperature, it just provides
a smooth interpolation between the two known asymp-
totic expressions. The dilepton emission rate is equal to
that from quark matter, dRl+l−

q /dM2, above Tc, i.e. the
corresponding weights in (15) at T > Tc are rq

h = 0 and
rq
q = 1. Below Tc it is chosen to be a combination of the

quark matter and hadronic rates:

dRl+l−

dM2

∣∣∣∣
T<Tc

= rh
q (T )

dRl+l−
q

dM2 + rh
h(T )

dRl+l−
h

dM2 . (20)

The weights in this equation are
{

rh
q (T ) = η(T )/(1 − η(T )),

rh
h(T ) = 1 − rq(T )

(21)

ensuring that at T = Tc the overall rate equals that from
the quark matter and providing an interpolation between
the quark rate at Tc and hadron rate at low temperatures.
As discussed in detailed in the previous section, the neces-
sity of an extra contribution in the hadronic phase is due
to the necessity of taking into account the effects beyond
the binary collision approximation, in which the results of
[8] were obtained. Otherwise (10) will not hold at T = Tc.

In Fig. 2 we show the dilepton spectra calculated for
two different particle densities corresponding to head-on
Pb-Pb collisions at zero rapidity at SPS (dN/dy = 600,
lower curves) and RHIC (dN/dy = 1500, upper curves)
energies. The dashed curves correspond to the binary col-
lision approximation to the hadronic dilepton rate and
the solid ones to the rate interpolation (20). We see that
at SPS energies the contribution from the extra sources
in hadron phase which are not taken into account in the
binary collision approximation with a limited number of
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Fig. 2. Dilepton spectra for SPS (lower curves) and RHIC
(upper curves) for second order phase transition. The dashed
curves correspond to a binary collision approximation to the
hadronic dilepton rate, the solid ones correspond to the rate
interpolation (20)

interacting mesons is visible in the resulting dilepton spec-
trum and brings a multiplicative factor of the order of 1.5.
At RHIC energies the signal is already almost totally dom-
inated by pairs from quark-antiquark annihilations at the
hot early stages of the collision (T ≥ Tc). Thus the details
of the description of the hadronic electromagnetic currents
in this mass range, even in the vicinity of Tc, are no longer
important.

Let us now consider the case of a first order phase
transition. The basic difference from the previous case
is that the matter evolves from the quark phase to the
hadron one through a mixed phase. Since in our approach
at T = Tc the rate in hadron phase approximately equals
that in quark phase, the weights in the mixed phase are
rm
q = 1 and rm

h = 0. This enhances the contribution from
the mixed phase as compared to the standard scenario in
which only binary hadron collisions are producing dilep-
tons from a volume occupied by hadronic phase through-
out the time the mixed phase exists (cf. Fig. 1). In the
hadronic phase, T < Tc, the rate is taken to be the same
superposition of quark and hadron rates, (20) and (21),
as in the case of second order transition.

The results of calculation for Pb-Pb collisions at SPS
and RHIC energies are plotted in Fig. 3. Here the picture
is somewhat more complicated than in the case of second
order transition. The main conclusions can be formulated
as follows. At SPS energies the system is created at a tem-
perature close to a critical one, so the main contribution is
coming from the mixed and low-temperature phases. The
new sources enhance the dilepton rate approximately with
a factor of 3 - 4 in the mass range under consideration.
The contributions originating from the new sources in the
mixed and the low-temperature phase are of the same or-
der. At RHIC energies the contribution of the high tem-
perature phase is already quite significant at M = 2 GeV
and dominates at M = 4 GeV. The new sources enhance
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Fig. 3. Dilepton spectra for SPS (dashed line) and RHIC
(solid line) for the first order phase transition

the rate with a factor 2 at M ∼ 2 Gev and are no longer
significant at M ∼ 4 GeV.

Let us note, that our main goal in this model calcula-
tion is to get a relative enhancement of the dilepton rate
as compared to the usual calculations exploiting binary
collision approximation. A well-known drawback of the
one-dimensional scaling expansion are the long expansion
times, ∼ 100 fm already at SPS energies. In a more real-
istic three-dimensional treatment the relative time scales
for different stages of system‘s evolution can change, but
the overall relative enhancement for the contribution from
the hadron phase can be expected to be more stable. In
particular, this should be the case at SPS where the mixed
and hadron phases are expected to dominate.

3 Conclusion

We have presented a method for taking into account the
higher order virial corrections to the dilepton emission rate
in a hot and dense hadron gas. To go beyond a binary col-
lision approximation with a limited number of interacting
meson species we argue that the thermal emission rates of
large mass lepton pairs from the quark matter and dense
hadron gas are approximately equal in the vicinity of Tc.
We then construct an interpolation between the hadron
rate due to binary collisions at low T and the rate at the
critical point T = Tc, effectively the quark matter rate.
The resulting rates are used in a one-dimensional hydro-
dynamical description of heavy ion collisions at SPS and
RHIC energies. The main result in the case of a second
order deconfinement transition is that while at SPS ener-
gies the higher order virial corrections to the dilepton rate
from the binary hadron collisions are still seen in the total
thermal dilepton spectrum, at RHIC energies the emission
from quark matter above Tc dominates in the considered
mass range 1.5 GeV ≤ M ≤ 4 GeV. In the case of a first or-
der deconfinement phase transition the rate enhancement
due to new sources is bigger than in the second order case
at SPS energies. At RHIC it can still be seen at the low-
mass end of the mass interval under consideration (M ∼ 2
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GeV) but is no longer important at M = 4 GeV, where the
emission from the high temperature QGP phase becomes
dominant.
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